BLUE RAM - BASIC
OPERATING SYSTEM (1.0)

INTRODUCTION. The BLUE RAM - BASIC OPERATING SYSTEM (1.0) is a
machine-code program which runs in the Blue Ram. It is composed
of a GOSUB linker and an advanced editor. The GOSUB linker
provides all of the linkages necessary to access BASIC subroutines
resident in the Blue Ram. In addition, the GOSUB statement has
been enhanced to provide parameter passing as part of the syntax.
Also, additional control structures have been implemented for
abnormal subroutine exits to higher levels as well as the current
level. The editor provides facilities for entering BASIC program
statements into the Blue Ram, LISTing Blue Ram BASIC statements,
CLEARing Blue Ram BASIC memory, and a special new command for
reordering statements or changing, inserting, or deleting any
character, word or phrase within any existing statement, whether
it is located in normal (screen) memory or in the Blue Ram. The
BLUE RAM - BASIC OPERATING SYSTEM (1.0) allows programs of up to
5600 characters (1800 normal memory + 3800 Blue Ram) to be entered,
edited, and run with the same ease and simplicity as with previous
BASIC programs., ‘

OPERATION., Depress RESET and load the BLUE RAM - BASIC OPERATING
SYSTEM (1.0) program tape. It is fully loaded when the screen
clears except for:

BLUE RAM OP SYS (1.0) (C) PERKINS ENGINEERING
BR>»

The BR> is displayed to indicate that you are operating under the
BLUE RAM - BASIC OPERATING SYSTEM as opposed to the normal > prompt.
To re-enter the BR> mode at any time in the future (after an error,
or after performing a non-BR> function) use CALL24576 or GOTO 1999
(see options 1 and 2). It is important to observe the prompt (BR>
or >) because certain commands have different effects when performed
in the BR> mode.

INITIAL CONDITIONS. When the BLUE RAM - BASIC OPERATING SYSTEM is
first loaded (after a RESET) it is initialized to a "no program"
state, i.e. it assumes that there is no BASIC program currently

in either normal or Blue Ram memory. To verify this fact, use:
PRINT RM . Note that 3800 is printed to indicate that all 3800
characters of Blue Ram memory remain to be programmed. Note also
that "PRINT" is not a BR> function so that you are returned to the
normal > mode. Any command may be initiated while in the BR> mode
but if the command was not processed by the BR> mode, you are
returned to the > mode upon completion of the function. Remember
that you can re-enter the BR>» mode at any time by using CALL24576
or GOTO 1999. Now use: PRINT SZ +to verify that normal memory

is essentially empty also (1776). The remaining 24 characters of
the 1800 total are used for the line number separator (see option
3) and linkage to Blue Ram program statements. Just consider
these 24 characters reserved and don't worry about them; they are
a necessary part of the program to be entered and must not be
removed., Line 1999 is the only visible line (via LIST) and is
used both for linkage to the BR> mode and as the highest normal
memory line number (line number separator). Enter GOTO 1999.

Blue Ram ~ BASIC Operating System (1.0} -~ Page 1 of &

ENTERING A PROGRAM. Enter program statements into memory in the
usual way beginning with a line number. The normal > mode will
only enter program lines into normal memory. However, the BR>
mode will enter program lines into either memory according to the
line number used. Line numbers greater than the line number
separator are automatically sorted and entered into Blue Ram
memory. Line numbers less than the line number separator are
sorted and entered into normal memory. The standard line number
separator is 1999. It is the last line number in normal memory
and is entered automatically as part of the loading process. DO
NOT attempt to enter line numbers higher than this one under the
normal > ., Doing so destroys the linkage code immediately behind
the line separator and prevents the running of Blue Ram BASIC
programs. To be on the safe side, use the BR> mode to enter
program lines remembering which memory they will end up in. Try
entering a few lines in the BR> mode on either side of the line
number separator ... say, lines 10, 20, 30, 2000, 2010, 2020,
Now use the LIST command to get a listing of the program so far.
LIST is a function processed in the BR> mode and may be used to
list the entire program., Normal memory lines are listed first
followed by a CALL24576, followed by Blue Ram memory lines. The
CALL24576 is the dividing line in the listing between the two
memory areas, It is also used to arm the BR> mode when loading
the program after it is dumped to tape using CALL24576;LIST for the
BR > mode. Entering programs into both memories when in the BR>
mode works exactly as in the normal > mode, as does the LIST
function. CLEAR is another function processed by the BR > mode,
however it functions quite differently from its counterpart in
the normal > mode. As you are aware, in the normal > mode, the
CLEAR command erases the screen., In the BR> mode, the CLEAR
command erases Blue Ram BASIC memory, resetting it to the "no
program" state. It has no effect on normal memory.

PROGRAM EDITING. A new command has been implemented which only
functions 1n the BR> mode. It is the RPL function and it is used
to reorder program lines and/or edit individual program lines.

The RPL command takes the form: RPL nnnn/xxx/yyyy where nnnn

is an existing line number, xxx is existing text to be deleted,
and yyyy is new text to be inserted at that same point in the
line. For example, consider the line: 10 PRINT "THIS IS A TEST",
The command: RPL 10/A/ANOTHER results in line 10 reading:

10 PRINT "THIS IS ANOTHER TEST"., Now try: RPL 10/IS/ISN'T. As
you can see, the RPL command found the first instance of "IS" in
the word "THIS" so that line 10 now reads: 10 PRINT "THISN'T IS
ANOTHER TEST". Care must be taken to give the RPL command enough
text such that the substitution is unambiguous. We could have used:
RPL 10/ IS/ ISN'T +to yield: 10 PRINT "THIS ISN'T ANOTHER TEST".
Any length phrase may be used as the existing text or the new text
but only the first instance of the existing text in the line will
be replaced by the new text. Note that RPL 10/NOTHER/ performs a
simple delete since no new text is provided: 10 PRINT "THISN'T IS
A TEST". The final (/) is optional in this case. The other form
of the RPL command is: RPL nnnn//mmmm where nnnn is an existing
line number and mmmm is a new line number. The effect of this
command is to delete the existing line number and re-enter the
same line elsewhere in the program at the new line number. Try:
RPL 10//8000 and notice that line 10 is missing and line 8000

Blue Ram - BASIC Operating System (1.0) - Page 2 of 5

now reads: 8000 PRINT "THISN'T IS A TEST". A simple: RPL 8000
/ISN'T/IS restores the original statement: 8000 PRINT "THIS IS A
TEST". As you can see, the new RPL command is very powerful and

can be a real convenience. Note that the slash (was used in

each case as a text string delimiter to separate the existing text
from the new text. Actually this delimiter may be any character
that will not be confused with the existing text. The RPL command
uses the first character after the exixting line number as the
delimiter and assumes all text until a similar delimiter is existing
text.

BLUE RAM PROGRAMMING CONVENTIONS. It is important to remember
whether a given program statement is in Blue Ram memory or normal
memory because of the way in which they are accessed. Remembering
is a simple task since line numbers below the line number separator
are in normal memory and those above are in the Blue Ram. Normal
memory program lines are accessed in the normal way using GOTO for
branching and GOSUB for subroutine calling. For Blue Ram program
lines, however, a separate, more flexible syntax is provided. Let
us review Bally's subroutine structure for a moment. A subroutine
is a segment of program which ends with a RETURN statement and 1is
envoked via the GOSUB statement. When the RETURN 1s encountered,
program control picks up at the point just beyond the GOSUB which
envoked the subroutine. The record of where to return to is kept
in an internal (invisible) "stack" in Bally memory. Each time one
subroutine envokes another, its corresponding return pointer is
saved in the stack. Since returning to the envoking statement is
the only use of the return pointer, that stack "level" is released
during the return process. Each time a return pointer is saved,
the stack is pushed to a lower level and each time a pointer is
released, the stack is "popped" to a higher level. The Bally's
stack is about 25 entries worth (shared with FOR/NEXT loops),
meaning that the main program can envoke a subroutine, which can
envoke a subroutine, which can envoke a subroutine, etc., to 25
levels (assuming no loops). Blue Ram program segments are assumed
to be subroutines unto the main program and are therefore envoked
via the GOSUB statement. The format for this statement can be as
simple as: GOSUB 2000 or as complex as: GOSUB 2000,7,Q+5,"XYZ"###
In the simple case the GOSUB 2000 simply envokes a subroutine
beginning at line number 2000. The second example is roughly
equivalent to: A=7;B=Q+5;C=text beginning pointer;D=text ending
pointer; RETURN; RETURN;GOTO 2000. The syntax of the simple GOSUB
statement has been expanded for accessing Blue Ram program lines,
AND BLUE RAM PROGRAM LINES ONLY! Normal memory lines may not be
referenced using this expanded syntax. The syntax expansion is
made up of two optional parts: 1) parameter passing, and 2) control
level selection. Each value following the GOSUB line number and
separated by commas is considered to be a parameter to be passed
to the line number being referenced. Parameters are passed via
the letter variables A through Z. The first parameter is passed
via variable A, the second via variable B, etc. Therefore, the
first two parameters in the above example are passed through A

and B just as if the statement A=7;B=Q+5 had preceded the GOSUB
statement. In the case of the third parameter, it was a text
string XYZ which cannot be passed in a variable, What is passed
in the next two variables (C and D in this example) are pointers
to the text string, the beginning of the string in the first

Blue Ram - BASIC Operating System (1.0} - Page 3 of &

variable (C) and the end of the string+2 in the second variable (D).
If the string is the last parameter and is terminated by a GO (end-
of-line) then the second variable points to the GO (end-of line)
character. If you do not wish to contend with this anomoly,
terminate the last string with the closed quotes. Note: the single
quote (') cannot be used to identify a string parameter. The
beginning and end pointers can be used by the referenced subroutine
to "peek" the string from memory using the %() form. For example:

10 GOSUB 2000,"SAMPLE TEXT STRING"

2000 FOR A=A TO B-2;TV=%(A);NEXT A;RETURN

The statement at line 2000 used the pointers (A and B in this case
since these were the first two parameters) to "peek" the string
from memory and print it on the screen. If a string of no length
is passed, i.e. "" , the subroutine can test for B>A+1. If B is
greater than A+1 then at least one character is contained in the
string parameter. Actually, B-A-1 is equal to the string length.
The asterisks, with no comma separators, are for control level
selection. Each asterisk results in the return pointer stack being
"popped" up one level. Remembering that the GOSUB itself "pushed"
a return pointer into the stack, the first asterisk pops that
pointer out of the stack and returns the stack to the level of the
statement which envoked the GOSUB. The net effect 1s a GOTO type
of statement, since we end up at the referenced line number at the
same level. This single asterisk form must be used in place of a
GOTO statement when referencing Blue Ram program lines. Use of a
GOTO with a Blue Ram line number has the effect of restarting the
current subroutine at its original beginning line number, regardless
of the line number used with the GOTO. Since an asterisk used in
conjunction with a GOSUB to a Blue Ram line number has the effect
‘of popping a return pointer out of the the stack and raising the
stack one level, a return to the point just beyond the GOSUB is
never taken, and anything else on that line will never be seen by
the program. It is just like GOTO 10;PRINT "HELLO". The PRINT
following the GOTO can never execute. Each asterisk has the effect
of popping out a return pointer and raising the stack one level.
Two asterisks, therefore, pop two return pointers out of the stack
and three pop three, etc. This feature gives the subroutine the
choice of returning to the envoking line (via the normal RETURN
statement) or returning to some other line even at some higher
level. For example:

10 GOSUB 2000

2000 K=KP;GOSUB 2020,K

2010 RETURN

2020 IF (A<48)+(A>58) GOSUB 2000%*
2030 PRINT A-48," IS A NUMBER KEY"
2040 RETURN

This sample program (beginnigg at line 10) envokes the Blue Ram
subroutine at line 2000. This subroutine accepts a single key
from the keyboard and passes it as a parameter to a lower level
subroutine at line 2020. The subroutine at 2020 checks the passed
parameter for a number key and if it is not, exits abnormally (up
one level) to line 2000 to get another key. Otherwise, it prints

Blue Ram -~ BASIC Operating System (1.0) - Page 4 of 5

the corresponding number and returns normally. This type of control
structure 1s especially valuable for aborting a processing sequence
when an error is detected several subroutine levels down.

FINAL NOTES: The recommended command for dumping a Blue Ram BASIC
program onto tape is: :PRINT ;NT=1;CALL24576;LIST ;:RETURN .

The CALL24576 is required immediately before the LIST to cause the
LIST command to processed in the BR> mode, thereby listing the
entire program, including the Blue Ram part. Remember that the
BLUE RAM - BASIC OPERATING SYSTEM (1.0) must be loaded prior to
loading a Blue Ram BASIC program tape. It is a good idea to put as
much of your program as possible in the Blue Ram since Blue Ram
memory is non-volatile and will actually run programs up to 30%
faster than the same program run in normal (screen) memory. Be
especially careful not to accidentally perform a CLEAR operation
while in the BR> mode since this will clear Blue Ram BASIC memory,
not the screen. If normal memory is accidentally cleared via the
RESET button, the Blue Ram BASIC program part can be recovered by
reloading the BLUE RAM OPERATING SYSTEM and then entering this
command statement: &(192)=0;%(24997)=2000;%(24999)=16705;&(64)=0 ,
and then immediately dumping the Blue Ram BASIC program to tape
using the command statement: ;PRINT ;NT=1;CALL24576;LIST ;:RETURN
This action saves the Blue Ram BASIC program part on tape where it
can be loaded again in the normal way, except that the first line
of the Blue Ram BASIC program is number 2000 (whether or not it was
originally) and the first two characters of that line are now AA.
Use RPL to repair the first line to its original form.

OPTIONS: The following options are available:

1. Line 1999 is initially set to CALL24576 to provide linkage
to the BR> mode via the GOTO 1999 command. Eight characters can
-be saved by changing this line to: 1999,

2. Line 1999 may be used to directly link normal memory to
Blue Ram memory by changing it to: 1999 GOSUB 2000 assuming of
course that the first line number in the Blue Ram is 2000,

3. If a line number separator other than 1999 is desired,
enter the following command statement: %(%(20050)-28)=nnnn where
nnnn is the new line number separator value. Note that this option
mugst be taken before 1 and 2. Do not use RPL for this action.

4. While 3800 additional characters of Blue Ram memory may be
programmed in BASIC, that same memory is necessarily shared with
the Keyboard driver (if you have a Blue Ram Keyboard), the RPL
command, and any other machine-code services you may be using. Up
to 3416 characters may be programmed without distroying either the
Keyboard driver or the RPL command. At this point, (RM = 400 or so)
you may dump the Blue Ram BASIC program entered so far, CLEAR Blue
Ram program memory, and then enter the remaining 400 characters.
Then simply dump the remaining program lines on tape directly behind
the first part. This method works because neither the Keyboard
driver nor the RPL command need to be in memory to load or run a
Blue Ram BASIC program.

Perkins Engineering

1004 Pleasant Avenue

Boyne City, Michigan
L9712

Blue Ram -~ BASIC Operating System (1.0} - Page 5 of 5

