
PEEK N'POKE

FRED CORNETT
MANAGING EDITOR
THE CURSOR GROUP

Copyright 1980 by THE CURSOR GROUP

All rights reserved, including the
right to reproduce this manual or
portions thereof in any form whatsoever
without permission in writing from the
publisher/author.

Peek N' Poke
Version 1.0 - Released Oct 26, 2000

This document has been retyped and converted to PDF format courtesy of the Bally Alley
newsletter. For other reprints and more information visit:

http://www.ballyalley.com

Corrections? Suggestions? Email Adam Trionfo at: ballyalley@hotmail.com

Important Note:

This manual was originally written for the first version of Bally BASIC (the cartridge that
requires the joystick port cables). However, almost everything in here is still applicable to the
second version of Bally BASIC (the cartridge with the built-in microphone jack-- also referred to
as AstroBasic).

The onboard calculator routine ($) referred to on page 12, has been removed from AstroBasic.
Ignore any reference to this original Bally BASIC command.

Anyone with additional information on what will definitely not work with AstroBasic, please
contact me so that I can make note of it.

Peek N' Poke Manual - Page 1 of 28

PEEK n' POKE

Written by: FRED CORNETT
The Cursor Group

There has been a great deal of confusion as to exactly what

PEEK n' POKE are and what they do.

Your computer consists of many thousands of simple circuits

that are capable of registering their state (or condition).

That state can only be one of two conditions: ON or OFF . The

computer is capable of checking the status of any individual bit

of memory location. A byte is one memory location. A byte is

composed of 8 bits. The computer uses symbol substitution to

communicate with you. If any particular bit is turned 'ON' it

substitutes a "1", if it is 'OFF', a 0 is substituted. A

program is a set of instructions that is placed in memory by a

set pattern of one's and zero's. This is the language your

computer understands. It is called "BINARY."

If we had to input our programs in one's and zero's, it would

be very difficult and take forever. So, there is an

intermediate language called "Assembly Language." Each type of

CPU (Central Processing Unit) chip speaks a different language.

Our CPU chip is a Z80. The instructions we give our Z80 are

called "Mnemonics". These mnemonics are an abbreviation of

assembly language. Assembly language exists only for the

convenience of the programmer, who can look at a program on

paper and understand the logic flow.

For a computer to understand assembly language, it must have

a program called an assembler. Our computer does not. So for

us to force an assembly language program into our computer, we

must buy a book that translates Z80 mnemonics into "OP Code."

An "OP Code" is our instruction which has been coded into a

hexadecimal number (Base 16). Decimal numbers are Base 10,

binary is Base 2, and OP Code (Hex) is Base 16. A book of Z80

OP Codes may be purchased in most any computer store.

Peek N' Poke Manual - Page 2 of 28

Hold on, you aren't done yet! Remember, our computer does

not have an assembler, so it can't understand our "OP Code"

instructions (Hex) until we convert them to decimal.

The average computer newcomer is at this moment muttering

"To heck with it!" Why bother you ask? As you know, "BALLY

BASIC" is somewhat limited, machine language is not! Stick with

us, we have one more major problem to solve.

OK, we've written an assembly language program, converted

that to mnemonics and OP Code. So how in the world do we get it

into the computer? Well, it's been hard up till now, but the

good person who wrote 'Tiny Basic' (Mr. Jay Fenton) must have

liked us, because he gave us three very powerful commands: PEEK,

POKE, and CALL. (Be thankful for these commands, many

manufacturers don't give them to their users).

"PEEK" is a command that lets you look at any specific

memory address and find out what is stored there. In our

February 1980 issue, page 14, we printed a 'Bally Memory Map';

use this map to find memory locations. NOTE: 'PEEK' accesses

memory 2 bytes at a time. Memory is normally accessed one byte

at a time, but Bally pulled some dirty tricks which has had some

good results and some bad results. For example: key in the

following one line program

10 A=26 "DO NOT HIT RUN"

BALLY TEXT AREA: -24576 TO -22777

Lets use the 'PEEK' command to see how the program is stored.

The area where your Basic Program is stored is called the

"Bally Text Area" and starts at -24576 and decrements by two's

to -22777. Hence, the beginning of our program should be at

location -24576. INPUT the following one line program without a

line and press "GO":

PRINT %(-24576)

Peek N' Poke Manual - Page 3 of 28

Your computer has printed "10". Remember, all line numbers

occupy 2 bytes regardless of size of line #. When we use

'PEEK', we are addressing 2 bytes at a time.

Let's try finding the rest of the program. INPUT the

following one line program without a line #.

PRINT %(-24574)

Your computer has printed "15681."

What in the world is that? We told you that we are

'PEEKING' 2 bytes at a time, so now we must separate the 2 bytes

from each other.

When the computer stored your program initially, it pulled

a dirty trick. It multiplied the second characters ASCII Code

time 256 and added the first characters ASCII Code to the total

and 'POKED' it in together.

Referring to the ASCII Conversion Chart in our June issue,

page 39, ASCII Code for "A" is 65; the ASCII Code for "=" is 61.

Lets see if this works out: 256 x 61= 15616 + 65= 15681, which

is what our computer printed out when we told it to "PRINT

%(-24574)." You can check this on your computer by keying in

the following without a line #:

X=%(-24574) ÷256;TV=RM;TV=X

RM is a variable that contains the remainder, if any, of any

division problem.

The computer will now print our "A=". So far, we have

found that location -24576 contained the line number (10) and

location -24574 has stored "A=". Using the same procedure, lets

look at the next location. Key in the following one line

program without a line # and press "Go":

PRINT %(-24572)

Your computer will print "13874". Let's convert that by our

division method:

X=%(-24572) ÷256;PRINT RM,X

Peek N' Poke Manual - Page 4 of 28

The computer will print "50 54". These are the next two

characters stored using ASCII Codes. Using our ASCII Chart,

page 39, of the June issue: '50'=2, '54'=6. So, now we have

found "10 A=26". I'll bet you think we are done, we aren't!

What is the last thing we do on a line? We hit "GO." This is

always stored at the end of each line. Let's look at the next

location -24570. Key in the following one line program without

a line # and press "GO":

PRINT %(-24570)

Your computer will print '13'. Checking our ASCII Chart we find

'13=GO'. Now we have the complete program: 10 A=26.

We are now in a better position of understanding how many

bytes our programs use:

LINE # occupies 2 bytes '2' occupies 1 byte

'A' occupies 1 byte '6' occupies 1 byte

'=' occupies 1 byte 'GO' occupies 1 byte

TOTAL : 7 bytes

If you have not "RUN" the program and you key in "PRINT A"

and press "GO", the computer will print '0'. Now, RUN the

program. Key in "PRINT A" and press "GO" and the computer will

print '26'.

Let's look again at the memory map on page 14 of the February

issue. We find that variable locations begin at 20078, and

since we know that all variables use 2 bytes, we are able to

ascertain the memory locations for all of the variables: A=20078

- add two bytes, B=20080 - add two bytes, and C=20082, etc....

Changing a variable is pretty easy, as in the case of our

LINE l0 program. When you key in A=26 (and hit RUN) the

computer goes to location 20078 and places "26" in that

location. The "BASIC" is acting as an interpreter between us

and the computer. Let's eliminate the middleman and do it

ourselves! Key in this:

Peek N' Poke Manual - Page 5 of 28

%(20078)=40 Press "GO"

Now key in "PRINT A", press 'GO'. The computer will print

out '40'. "%(20078)=40" is a "POKE Command." It allows us to

"POKE" our own information directly into a computer location

without using the "BASIC" interpreter. Do you remember the

Music in our March issue, or "Connect Four" in the August issue?

Both of those programs made heavy use of "PEEK n' POKE."

OK fine, this is interesting and cute, but why use it? Lets

look at the following example. Key in the following one line

program:

10 A=22104;B=6109;C=19867;D=-4107;E=9987;F=-31063

Hit "Go" and key in PRINT SZ. This took up 49 bytes. All we

wanted to do is store 6 numbers. Since we only have 1800 bytes,

we should use as economical a method as possible. The cheapest

way of doing this is by using a "REM Statement"

10.1234567890123

Why did we add 14 numbers after the period? Let's figure it

out. We are going to store six large numbers. Each of these

numbers will require a 2 byte location for storage. In the

previously explained process, we learned that the computer

stores 2 different ASCII Codes in one 2 byte location, so we

multiply 2 x 6 and get 12 ASCII characters. Now, we cannot

'POKE' into the line number location, which is -24576, or the

location where the period (.) is -24574. Even though the period

occupies only one byte, we have to fill in that location with

another ASCII character (which we won't use) -- then reserve 12

bytes (for 6 numbers).

 Memory Location Value

-24576 10 LINE # (don't POKE)
-24574 .1 REM (don't POKE)
-24572 23 Value 22104
-24570 45 Value 6109
-24568 67 Value 19867
-24566 89 Value -4107
-24564 01 Value 9987
-24562 23 Value -31063
-24560 "GO" is stored here

Peek N' Poke Manual - Page 6 of 28

INPUT the following line: 10 .1234567890123

Now INPUT the following program without a line number:

FOR A=-24572TO-24562STEP 2;INPUT %(A);NEXT A

The computer will print "%(A)" and wait! It is waiting for

you to INPUT the 6 values, pressing "GO" after each one: 22104,

6109, 19867, -4107, 9987, -31063. After you have done this, key

in 'LIST'. The computer will print:

10 .1XV???M???'??

The reason the computer printed garbage in LINE 10 is; it

is dividing by 256 and printing the result of an ASCII Code.

Whenever an ASCII Code is not a standard ASCII Character, our

computer prints '?'.

To make sure we really have "POKED" those 6 values into

LINE 10, lets "PEEK" at them. INPUT this one line program

without a line # and hit "GO":

FOR A=-24572TO-24562STEP 2;PRINT %(A);NEXT A

The computer will print:

22104 6109 19867 -4107 9987 -31063

Remember when we used the old method of storing this info:

A=22104; B=6109; etc? When we keyed in "PRINT SZ" it printed

"1751", which means the old way took up 49 bytes. NOW key in

"PRINT SZ". The computer will print "1783". A savings of 32

bytes (and we are only using 6 numbers). Think of the saving if

you had 100 numbers!

I generally find myself in a high state of agitation with

people who gripe a lot about things they can't change. As an

American, I have found that the best way to beat the system is

not to became an anarchist and destroy it, but to work within

the system and get it to work for you! This can be beautifully

applied to the "BALLY." An example:

Many of us have been frustrated at the 'apparent' inability

of our "BALLY"

Peek N' Poke Manual - Page 7 of 28

to store decimal formatted numbers (i.e., $127.10) in one

variable or location. We have learned in this tutorial that 2

ASCII Codes can be stored in one 2 byte location and yet be

separated by multiplying one of them by 256 (x256) and adding

the other to the total.

We have one limitation. ALL VALUES MUST FALL BETWEEN 32767

and -32767. Suppose we are trying to put a checkbook program

together and we want to store dollars and cents as one value in

string variables.

Using the logic that Jay Fenton used in storing two

characters in one location, lets pull our own dirty trick.

INPUT the following program:

10 INPUT D,C

20 T=Dxl00+C

30 PRINT #1,T,"+$",T ÷100,".",RM

Now RUN this program. When the computer prints "D" INPUT

127; when the computer prints "C" INPUT 10. The computer will

now print:

12710=$127.10

What we are doing is this: D=Dollars, C=Cents. We are

multiplying Dx100 and adding "C" to it to create "T" (for

Total). What we have done is store Dollars and Cents in one

variable, which could just as easily have been one string

variable (@(1)) or one memory location.

To get the amount back out, we divide the total "T" by 100,

which will give us Dollars and we get the Cents amount from the

variable "RM". Easy isn't it?

Remember the limitation we spoke of? We cannot use any

values larger than 32767, which in our case boils down to

$327.67. That wouldn't have been much of a drawback in 1955 but

it sure is now. Let's play some dirty tricks of our own. Key

in the following program:

Peek N' Poke Manual - Page 8 of 28

10 INPUT D,C

20 IF D>326D=D-326;T=Dx100+C;T=(-T);GOTO 40

30 T=Dx100+C

40 PRINT T

50 IF T#ABS(T)T=ABS(T);D=T ÷100+326;C=RM;GOTO 700

60 D=T ÷100;C=RM

70 PRINT #l,"$",D,".",C

Now we can handle any amount LOWER than $653.68. I don't

find this much of a limitation; if we were writing a checkbook

program, I doubt if many of us would write more than one or two

checks exceeding $653.67 per month. Whenever we need to write

an amount for more than that, just break it into two checks

instead of one. Let's go through that program step-by-step:

LINE 10: If dollar amount (D) is larger than 326, subtract

326 from dollar (D) amount. Total (T) equals

dollar (D) amount multiplied by 100 and add cent

(C) amount. Set a flag to notify computer that

this amount is more than $326 by making the total

(T) negative (-T). Skip line 30.

LINE 30: If dollar amount is less than $327 total, (T)

equals dollar amount (D) times 100 plus cent

amount (C).

This ends the INPUT portion of the program.

LINE 50: If the total (T) is a negative (-) number, change

it to positive (+). Dollar amount (D) will equal

total (T) divided by 100 and restore (add) 326 to

it. (This is how we get back the 326 we subtracted

in line 20). Cents amount becomes the remainder

(RM) left over after dividing by 100. Skips line

60.

Peek N' Poke Manual - Page 9 of 28

LINE 60: If total (T) was not negative (meaning over $326

originally), dollar amount (D) equals total (T)

divided by 100. Cent amount (C) equals remainder

(RM) left over after division.

LINE 70: The "#1" used in this print statement is a tab

function telling the computer how many spaces to

place between the separate types of print. For 3

spaces we would have used "#3".

Let's look at alternate ways of storing our check information.

Since this is a "Peek n' Poke Manual" lets do just that!

Remember the earlier exercise which uses a "REM" Statement?

Since our BASIC does not allow 'DATA' Statements, we have to

create our own. This is what we did with our "Three Voice Music

Assembler", VOL 1, Issue #3 (March), and also the "Connect

Four", VOL II, Issue #1 (August). This is a far more stable way

to store data than in the string arrays. Also, it is very easy

to store on tape.

Let's say we want to store 10 check amounts. INPUT the

following changes to the preceding program:

2 .1234567890l23456789012

5 CLEAR;FOR P=-23572TO-24554STEP 2

40 %(P)=T;NEXT P

42 FOR P=-24572TO-24554STEP 2

45 T=%(P)

80 NEXT P

Now you can store 10 check in line #8. RUN the program and

input 10 different dollar and cent values. If you want to

reprint the values of these checks after the program has been

run, key in GOTO 42 and hit "GO".

Peek N' Poke Manual - Page 10 of 28

If we wanted to view the checks individually, we would make the

following changes:

42 CLEAR;INPUT "WHAT CHECK # DO YOU WISH TO SEE?(1-10) "N

45 T=%(Nx2 +(-24574))

70 PRINT #1,"CHECK #",N,"=$",D,".",C

80 FOR Z=lTO 2000;NEXT Z;GOTO 42

Now, to view a particular check, you input the number

between 1 and 10. The key here is in Line 45, which is doing

the following:

Whenever you want to add to a negative number you decrement

it: TOTAL = (-24574) PLUS 2 TIMES the number of the check.

If we wanted Check #2 its memory location would be: -24574

+ 2xN or -24570. Our first memory location that we can use

on Line #5 is -24572, the second would be -24570. See, it

all checks out. (LINE 80 is merely a timing loop).

Now, lets add a few lines that will give us a total of all the

checks:

42 X=0;Y=0;FOR P=-24572TO-24554STEP 2

45 T=%(P)

70 X=X+D;Y=Y+C;PRINT #1,"$",D,".",C

80 NEXT P

90 IF Y>99X=X+Y ÷100;Y=RM

100 PRINT #1,"TOTAL=$",X,".",Y

Since the computer is not aware of the difference between

dollars and cents we must supply a way of adding these items

separately. We also need a way of correcting the dollar and

cent totals if the cent total exceeds 99.

LINE 42: Let X=Total Dollar Counter; Let Y=Total Cent

Counter

LINE 70: Add the individual check amounts (D and C) to the

Peek N' Poke Manual - Page 11 of 28

 total counters (X and Y)

LINE 90: If total cents (Y) exceeds 99, divide total cents

(Y) by 100 and add this to total dollar counter

(X). Let total cents (Y) be the remainder (RM) of

that division.

You could also establish 'Payee Codes' and store the 'Payee

Names' in a REM Line. Also, the complete date could be stored

in one location: 12/31/1980 would be 12310 (using only the last

digit of the year). REMEMBER: get as much mileage as possible

out of each memory location.

EXAMPLE: We would need to know if an individual check has

been reconciled with our statement. The easiest way to handle

that would be to make the date a negative number if the check

has been reconciled.

I would also make the payee code number location contain

the tax code. All of this would not use too much memory:

AMOUNT = 2 bytes

DATE/RECONCILE = 2 bytes

PAYEE CODE/TAX STATUS = 2 bytes

That's only a total of 6 bytes per check.

Peek N' Poke Manual - Page 12 of 28

MACHINE LANGUAGE

This manual is not intended as a course in Z80 Machine

Language or Assembly Language. To write a decent machine language

course would occupy the better part of a year, and subsequently

because of its limited appeal to the average Bally user be priced

totally beyond the value of the information contained.

There are numerous excellent paperback books written on that

subject. Cursor does recommend the following books which may be

purchased locally at a computer store.

Z-80 and 8080 Assembly Language Programming by Kathe
Spracklen, published by Hayden (ISBN 0-8104-5167-0);
Library of Congress Catalog Card Number 79-65355 for
approximately $8.95.

Z80 Instruction Book by Nat Wadsworth, published by
SCELBI Publications for approximately $4.95.

We strongly suggest you purchase both of these books! If they

are not available locally, contact: OPAMP/TECHNICAL, 1033 North

Sycamore Ave., Hollywood, CA 90038. Telephone: (213)464-4322 for

mail order service.

The purpose of this portion of the manual is too acquaint you

with the methods required by the Bally for you to utilize your own

machine language routines. To utilize user-supplied routines you

must adhere to several rigid rules, the most important of which is:

A machine language program that is used in conjunction with

the Bally BASIC Cartridge must be stored in a location that will

not interfere with the BASIC Text! If we were to store a machine

language program in the text area (-24576 thru -22777), the BASIC

Language would attempt to interpret our machine code as BASIC,

thereby driving you crazy with "What and How" messages. Therefore,

you must find locations that will not interfere.

The easiest to use are the "Tape Input Buffer" (20002 - 20049)

and the "Line Input Buffer" (20180 - 20283). There is also an 18

byte area (20144 - 20161) that can be utilized as long as you are

not using the OnBoard Calculator routine ($).

Slightly more difficult to use would be the "Screen Memory

Area" (16384 - 20479). The problem with this area is that graphics

and text concurrently occupy

Peek N' Poke Manual - Page 13 of 28

the locations. Remember the "CRITTER" program in the October

1980 issue of Cursor? When you ran that program you had an area

at the bottom of the screen that was twinkling. That was where

the Machine language program was stored (19584 thru 19880).

This works great, but you cannot put any graphics or text in the

same area. That is why you had to keep the Cursor from

scrolling down to that location. If you were to scroll down

there, it would destroy the machine language.

If you check most of the machine language programs we have

printed, you will see that we stored them in the Line Input

Buffer (20180 thru 20283): February 1980 issue of CURSOR page

10, Line 1010 "M=20180"; March 1980 issue page 22, Line 50

"M=20180"; October 1980 issue page 71, Line 20 "A=20180". In

each case the starting location is 20180.

When doing Machine Language programming, we cannot stress

enough the importance of a "TI PROGRAMMER CALCULATOR." It isn't

cheap ($59.00) but it will save hundreds of hours of work. Most

of the time spent in programming is changing from Binary to

Hexadecimal and Decimal and back again. By purchasing this

calculator, which is designed exclusively for machine language

programmers, you eliminate all that work.

The binary form of number representation is the basis of

computer operations. It requires the use of only two digits: 0

and 1. These two digits are represented by voltages in the

computer, a low voltage (0) and a high voltage (1). The

following is a representation of the numbers 0 through 5 written

in binary form: 0=0, 1=1, 10=2, 11=3, 100=4, 101=5. Notice how

rapidly the numbers get very long. Let's tackle some larger

numbers.

In the Decimal System (base 10) each digit represents a
power of 10. For example:

423 = 4 x 100 or 4 x 10 2

 + 2 x 10 or 2 x 10 1

 + 3 x 1 or 3 x 10 0

Peek N' Poke Manual - Page 14 of 28

Any number raised to the 0 power equals 1, i.e., 2 0=1, or 16 0=1,

etc.

In the Binary System (base 2), each digit represents a

power of 2. For example:

1101 = 1 x 2 3 or 1 x 8

 + 1 x 2 2 or 1 x 4
 + 0 x 2 1 or 0 x 2
 + 1 x 2 0 or 1 x 1
BINARY 1101 13 DECIMAL

So, 1101 in binary is the equivalent of 13 in decimal.

Conversion between the two number systems can be done using

these rules, but for our purposes, we would normally convert

binary to hexadecimal.

SMALL NUMBER CONVERSION TABLE

DECIMAL BINARY HEXADECIMAL

 0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10

In the hexadecimal (base 16) number system, there are 16

different digits. The digits 0 through 9 are borrowed from the

decimal system and letters of the alphabet fill in the other

six. In the hexadecimal system, each digit represents a power

of 16. For example:

Peek N' Poke Manual - Page 15 of 28

1B3 = 1 x 16 2 or 1 x 256

 + B x 16 1 or 11 x 16

 + 3 x 16 0 or 3 x 1

HEX 1B3 = 435 DECIMAL

POWERS OF 16 CHART

160 = 1

161 = 16

162 = 256

163 = 4,096

164 = 65,536

Lets convert 2AF3 to decimal. 2AF3 is composed of four

numbers, so we count down four places on the Powers of 16 Chart

for our first number:

 2 x 16 3 = 2 x 4096 or 8192

+ A x 16 2 = 10 x 256 or 2560

+ F x 16 1 = 15 x 16 or 240

+ 3 x 16 0 = 3 x 1 or 3

-------- -----

2AF3 HEX = 10995 DECIMAL

If our hexadecimal number had been 2AF we would count down

three places on the powers of 16 chart for our first number:

 2 x 16 2 = 2 x 256 or 512

+ A x 16 1 = 10 x 16 or 160

+ F x 16 0 = 15 x 1 or 15

---------- ---

 2AF HEX = 687 DECIMAL

Peek N' Poke Manual - Page 16 of 28

To convert decimal to hexadecimal, we divide the decimal
number by the largest power of 16 equivalent that will fit.
Example: lets convert 10995 to Hex

 2
 4096 10,995
 8,192
 2,803 remainder

Our first Hex number is "2". Now divide the remainder by the
next lower power of 16 equivalent:

 10
 256 2803
 2560
 243 remainder

Our second Hex number is "A". Looking back on our conversion
chart we find 10 = A. Now we divide the remainder by the next
lower power of 16 equivalent.

 15
 16 243
 16
 83
 80
 3 remainder

Our third Hex number is "F". Looking back on our conversion
chart we find 15 = F. Now, our final remainder becomes our
fourth Hex number "3".

10995 DECIMAL = 2AF3 Hexadecimal

All of this has a tendency to overwhelm the beginner, but the
concepts are easily grasped if you'll stick with it, the rewards
are tremendous!

There is one additional stickler. Our BASIC cannot handle any
decimal number larger than 32,767. But it can handle the same
number in negative form. In other words, it can handle the
decimal range of -32767 through 32767 which gives us the full
range of 65,536. If you are going to use a hex number larger
than 7FFF it will, when converted to decimal, be larger than
32767. We must therefore convert that number to a negative
number that will be accepted by our computer. The easiest way
to do that is with the following program:

Peek N' Poke Manual - Page 17 of 28

HEX TO DECIMAL CONVERTER - Note: Remember to reverse hex pair
 order prior to input.

9 PRINT “HEX # ?”,
10 FOR A=1TO 4
20 @(A)=KP
30 IF @(A)>47IF @(A)<58TV=@(A);@(A)=@(A)-48;NEXT A
35 IF @(A)>64IF @(A)<7lTV=@(A);@(A)=@(A)-55;NEXT A
37 IF @(l)<16GOTO 60
40 GOTO 20
60 B=4096; T=0;FOR A=1TO 4
65 IF A=1IF @(A)>7GOSUB 100;NEXT A
70 IF A=1IF @(A)<8@(l)=@(l) ×B;T=T+@(l);NEXT A
75 B-B ÷16;@(A)=@(A)xB;T=T+@(A)
80 NEXT A;GOTO 150
l00 T=-32767;IF @(A)=8RETURN
110 T=T+((@(A)-8) ×4096)-l;RETURN
150 PRINT ;PRINT #1,”DEC. EQUIV=”,T
160 GOTO 9

Why On-Board ROM Sub-routines?

 We can fairly simply write small machine language programs

that will do anything you want but, like any type of program,

they take up memory space. We are very fortunate that a manual

exists explaining machine language routines that are built into

our unit already. These routines, when properly utilized,

require us merely to call them. Example: Page 6, Bally on-Board

ROM Sub-routines, Subroutine #48:

48 026A E,D,C,B,L,H SCROLL
Block moves. Moves C bytes from (HL+DE) to (HL).
Increments HL by DE and repeats B times.

Lets look at the first line: ‘48’ is the sub-routine number.

‘026A' is the hexadecimal address of this subroutine (618

decimal). 'E,D,C,B,L,H’, are the Z80 registers that must be

utilized and the order in which they must be loaded. Looking at

this again we will be using registers DE, C, B, HL.

 Whenever we use a machine language routine, we must use a

“CALL” to tell the computer where to go and also to notify it

that the information will not be in BASIC. Sometimes, when

using a CALL, the computer can't find its way back, and

Peek N' Poke Manual - Page 18 of 28

your keyboard will lock up and do funny things. For this

reason, it is usually wise to “SAVE THE BASIC POINTER” as the

very first thing, and “RETURN TO BASIC” as the last.

Let’s put together a machine language program using the

scroll Subroutine #48. First we will write the program in

machine language (OP Code).

OP CODE ASSEMBLY LANGUAGE COMMENTS

D5 PUSHD Save Basic Pointer
FF RST 56 On Board Subroutine Notification
31 Subroutine 48 + 1 Converted to Hex

 Lets look again at the subroutine: it is saying that HL

must be loaded with the screen address of the first line we want

to scroll. Please refer to the DMA GRAPHICS article on page 25

of the April/May issue for an explanation of screen address

locations. I selected 18424 as the location I wanted.

Our subroutine says it increments HL by DE. That means the

increment is to be stored in DE. Well, we want to scroll in one

line increments, and referring back to the April/May article we

know that one full line on our TV is 40 bytes. Therefore, we

know that we want 18424 in HL and 40 in DE.

 Looking back at our subroutine it says “Moves C bytes from

(HL + DE) to HL”. Therefore, ‘C’ would have to contain the

number of bytes on a line you want to move. Let’s move half a

line. Half of 40 is 20. Therefore 'C' must contain 20.

 Now for the last leg. Refer back to the subroutine:

“Repeat B times”. Therefore, 'B’ would be the total number of

lines we want to move upward. In this case let’s move 20 lines.

 OK! HL = 18424; DE = 40; C =20; B = 20. Now we have to

convert these decimal values to hexadecimal:

HL = 47F8; DE = 28; C = 14; B = 14

Several more items of necessary information before we proceed.

HL and DE are register pairs. A “register pair” is a

combination of two registers. HL = H and L; DE = D and L. The

purpose is to allow larger number

Peek N' Poke Manual - Page 19 of 28

handling capability. Referring back to the subroutine, it gave

us the register load order (sequence): E,D,C,B,L,H

 This means we must split apart DE and HL. Lets load DE

first. Remember, DE=28. Each single register can handle a

maximum of 2 hex numbers. In the case of DE it already is two

numbers so let’s proceed with 00. DE=0028. Therefore, E=28,

D=00. Getting back to our program.

D5 Save Basic Pointer
FF Call Subroutine number
31 48
28 E Register
00 D Register
14 C Register
14 B Register

 Next comes HL. The subroutine tells us to load HL

backwards as we loaded DE, so, HL=47F8 becomes F8 47.

F8 L Register
47 H Register
Dl POP DE; Put Basic Pointer Back
C9 Return; Go Back to Basic

 Next, we must convert these Hex pairs to Hex bytes (4 at a

time) and then convert Hex bytes to Decimal by using the Hex to

Decimal Converter program. To get Hex bytes we must first

reverse their order:

HEX PAIRS HEX BYTES DECIMAL
DF FFD5 -43
FF

31 2831 10289
28

00 1400 5120
14

14 F814 -2028
F8

47 D147 -11961
Dl

C9 00C9 201
00

Peek N' Poke Manual - Page 20 of 28

Notice the "00" in the last line. We had to add zeroes so it

would fill in the space. 00 in assembly language is known as

“NOP”, which means ‘No Op’ (No Operation); in other words--

nothing.

We converted the Hex to Decimal because our computer can't

understand the Hex Code. Ah, someday...

 In previous pages we discussed the locations we can store a

machine language program. Now, we will discuss how to get it in

there.

 We will store our program in the Line Input Buffer starting

at 20l80. Look at our complete program now:

1010 M=20l80;B=M;C=l090
1020 L=-43;GOSUB C
l030 L=10289;GOSUB C
l040 L=5120;GOSUB C
1050 L=-2028;GOSUB C
1060 L=-11961;GOSUB C
1070 L=-201;GCSUB C
1080 FOR A=ltol4;CALL B;NEXT A;STOP
1090 %(M)=L;M=M+2;RETURN

 Lets run through this program the same way the computer

will: Nothing happens until we get to l020, we GOSUB C, which is

Line l090. 1090 says:

 Poke Location M with the Value of L, then increment M, by 2

and return. This goes on through line #1070 thusly:

%(20180)=-43
%(20182)=10289
%(20184)=5120
%(20186)=-2028
%(20188)=-11961
%(20190)=-201

 Then we go to Line l080. In this case, we want to CALL

this Subroutine 14 times and then STOP. Notice we are using the

Variable B, which gives the beginning location of OUR

Subroutine. ‘M’ wouldn't help us at all because we were

incrementing 'M’.

Peek N' Poke Manual - Page 21 of 28

If you are still somewhat confused don't feel alone. The

more you reread, and work with the examples we print in our

issues, the clearer it will become.

INTERRUPT HANDLING

 This is a somewhat more complex area to handle. If you are

a total beginner, this section may appear to be gobbledy-gook.

However, if you buy the books we have recommended and do the

exercises in our issues and manuals, you will come to an

understanding. Computer Programming is like any other endeavor,

you must learn to walk before you run .

OUTPUT PORT D (HEX) (13 DECIMAL) INTERRUPT FEEDRACK:

 This Port works with the IM2 instructions to place on the

data bus at each interrupt, the data outted to this port.

 In most Z80 applications IM2 is used to determine where to

go for a device interrupt. The Bally uses it to generate a

location to go to at each screen interrupt.

 When the Z80 receives an INT from the Address Chip, it

looks to the 'I' register for the high order byte (or page) and

to the data bus for the low order byte, of the address for the

interrupt vector. This interrupt vector points to the interrupt

processing routine. Only the upper 4 bits are used in

responding to a Light Pen interrupt.

EXAMPLE IM2 INTERRUPT. This example is what the BASIC really

does. BASIC's interrupt routine is at

20B0 (HEX).

Peek N' Poke Manual - Page 22 of 28

Address Chip

Data Chip

Z80
PC

62
20

Z80 goes to 2062
for interrupt

vector

20B0 Transfers
controls to

this location

RET I

20B0
|
|
|

(4) -
Pushes
Program
Counter

Stack
(1) - Produces Interrupts

I Reg. (3)
Data Bus

(2)

Data Chip places value output
to Port D (Hex) on Data Bus

(5)

(6) - Start of Interrupt Processing

(7) - Replace PC from stack and
 return to Interrupt Program

I M 2 Interrupt

INT

2060

2062

2064

Peek N' Poke Manual - Page 23 of 28

OUTPUT PORT E (HEX) (14 DECIMAL) INTERRUPT MODE:

 The value output to this part determines what type of

interrupt is to occur. There are two types of interrupts:

Screen Interrupts and Light Pen Interrupts.

 The Screen Interrupt is used to synchronize the software

with the video display. The Screen Interrupt is the INT Signal

sent to the Z80. The Screen Interrupt occurs when the video

system completes scanning the line in the interrupt line

register (output port F (HEX)). This interrupt can be used for

timing since each line is scanned 60 times a second.

 By writing your own interrupt routines and using the 'I'

register and output port D (HEX) to point to it you can put up

to 256 different colors on the screen by changing the color

registers each interrupt.

 The Light Pen Interrupt occurs when the Light Pen Interrupt

mode is set and the light pen is triggered and the video scan

crosses the point on the screen where the light pen is.

 There are two modes for both the Screen Interrupt and Light

Pen. In mode ‘0’ the custom chips will continue to try to

interrupt the Z80 until it finally acknowledges the interrupt.

In Mode ‘1’ the custom chips give up if the Z80 does not

acknowledge it by the next instruction. Both interrupts can

occur if both are set, but the screen interrupt has priority.

INTERRUPT CONTROL BITS

PORT E (Hex) bits

7 6 5 4 3 2 1 0

L
ig

h
t P

e
n
 M

o
d
e
 (0

 o
r 1

)

L
ig

h
t P

e
n
 In

te
rru

p
t E

n
a
b
le

 (1
 fo

r
e
n
a
b
le

d
)

S
cre

e
n
 In

te
rru

p
t M

o
d
e
 (0

 o
r 1

)

S
cre

e
n
 In

te
rru

p
t (1

 fo
r e

n
a
b
le

d
)

Peek N' Poke Manual - Page 24 of 28

You can see from this (refer to INTERRUPT CONTROL BITS chart

page 23) that if you want just a Screen Interrupt in Mode 0

(must interrupt) without the Light Pen, you would just set bit 3

and the decimal value would be 8. This is why 8 is always

output to Part E in the games and in BASIC!

OUTPUT PORT F (HEX) (15 DECIMAL) INTERRUPT LINE:

 The value output to this port determines when a screen

interrupt (INT to Z80) occurs. In our low resolution system

only bits 1 - 7 are used with bit 0 set to zero. In low

resolution there are 102 lines of 40 bytes with 16 bytes left

over. Since the custom chips were designed to operate in a high

resolution mode they scan 204 lines. This means that for every

line of low resolution that is scanned 2 lines of high

resolution were scanned. Since the reference for Port F (HEX)

is for high resolution, we have to multiply the number of lines

in low resolution by two for the value we output to the port.

This is why bit zero is set to zero and we only use bits 1 - 7.

 When the custom chips have finished scanning the number of

lines output to Port F (HEX) a screen interrupt is generated.

Each line is scanned 60 times a second and there are 256 lines

per frame so 15,360 lines are scanned per second. If you divide

output Port F (HEX) by 15,360 you will get the time in seconds

between interrupts. EXAMPLE:

PORT F = 200 lines 200/15360 = .013 seconds between interrupts or 13

milliseconds.

OUTPUT PORT C (HEX) (12 DECIMAL) THE MAGIC REGISTER:

When an On-Board WRITE Routine calls for a MAGIC REGISTER

value, this means that it is to modify the data before placing

it in memory. This is valid only if the 'write' is from 0 to

16K. What happens is, you write to a location between 0 and

16K. In our low resolution system this only works from 0 to 4K

since we only have 4K of memory.

Peek N' Poke Manual - Page 25 of 28

FUNCTIONS SET BY MAGIC REGISTER SETS

Note: Low resolution does not allow use of rotate.

 As many as four functions can be done at once. Order of

operation is as follows:

 1. Expansion
** 2. Rotating and Shifting
 3. Flopping
** 4. OR and XOR

 ** NOTE: Rotate and Shift, and OR and XOR, cannot be set at the same time.

INPUT PORT 8 (HEX) (8 DECIMAL) INTERRUPT FEEDBACK REGISTER:

This is an input function. By looking at this register

after an OR or XOR has been performed we can determine if we

have written on top of something and also where.

A ‘1’ in the intercept register means we have written on top

of something. Bits 0 - 3 give information for all OR or XOR

Writes since the last input from the intercept register resets

these bits. This means every time something is written into

memory using an OR or XOR a check is made to see if the Write

occurred over other data, if so, Port 8 (HEX) bits 0 - 3 are

reset to zero.

7 6 5 4 3 2 1 0

L
S

B
 o

f sh
ift a

m
o

u
n

t

M
S

B
 o

f sh
ift a

m
o

u
n

t

R
o

ta
te

E
xp

a
n

d

O
R

X
O

R

F
L

O
P

P
ee

k
N

' P
ok

e
 M

an
ua

l -
 P

ag
e

 2
6

of
 2

8

IN
T

E
R

C
E

P
T

 F
E

E
D

 B
A

C
K

 B
IT

S

7
6

5
4

3
2

1
0 Intercepts in pixel #3 in an OR or XOR write since last reset

Same as bit 0 for #1

Same as bit 0 for #2

Same as bit 0 for #3

Intercept is pixel #3 in last OR or XOR Write

Same as bit 4 for #2

Same as bit 4 for #1

Same as bit 4 for #0

R
e

la
tio

n
 b

e
tw

e
e

n
 b

yt
e

,
b

it
a

n
d

 p
ix

e
l.

 N
O

T
E

:
A

W

o
rd

 is
2

 b
yt

e
s.

B
yt

e

P
ix

e
l

P
ix

e
l

 #
3

 #

2

 #
1

 #

0

b
it

Peek N' Poke Manual - Page 27 of 28

Machine Code Listing of “Critter” program from page 66, October 1980 issue of
CURSOR.

4C80 F3 DI
D9 EXX
3E 4C LD A, 4C
ED 47 LD I, A Load I with page of interrupt vector
3E E0 LD A, E0
D3 0D OUT (0D), A Load custom chips with line of

interrupt vector
D9 EXX
FB EI
C9 RET

4CE0 E13 4C DEFW “4CE3” Points to interrupt routine

4CE3 CD B0 20 CALL 20B0 Call BALLY's interrupt routine
F3 DI
ED 73 70 4C LD 4C70, SP Save SP
31 70 4C LD SP, 4C70 Move SP
F5 Push AF
C5 Push BC
D5 Push DE
E5 Push HL
DD E5 Push IX
FD E5 Push IY
DB 1C In A, (1C) Get KN(1) Value
32 3A 4D LD (403A), A Place in vector block
FF RST 38 On Board Call
00 Routine 00 Start multiple Calls
07 18 4D M CALL (4D18) Call V Write Routine
3F 38 4D 20 40 VECT Move vector (see ROM manual)
07 18 4D M CALL (4D18) Call V Write Routine
02 Routine 02 End Multiple Calls
FD El pop IY
DD El pop IX
El pop HL
Dl pop DE
C1 pop BC
Fl pop AF
ED 7B 70 4C LD SP, (4C70) Return SP
FB EI
C9 RET

4Dl8 1F 38 4D 24 4D V Write
08 M RET

4D20 00 98 DEFW 152 X Boundaries
00 40 DEFW 64 Y Boundaries
00 00 DEFW 0 (0,0) Position
02 08 DEFW 520 2 byte, 8 line pattern size
0A A0 DEFW -24566
22 88 DEFW -30685
AA AA DEFW -21846 Pattern
2A A8 DEFW -22486
08 20 DEFW 8200
20 08 DEFW 2080

Peek N' Poke Manual - Page 28 of 28

08 20 DEFW 8200 PATTERN (cont.)
00 00 DEFW 0

20 DEFB
80 DEFB
00 DEFB
05 DEFB
00 DEFB
00 DEFB
00 DEFB VECTOR BLOCK(see ROM manual page 39-41)
03 DEFB
05 DEFB
00 DEFB
00 DEFB
00 DEFB
03 DEFB

ASCII Conversion Chart

ASCII Character ASCII Character ASCII Character ASCII Character ASCII Character
13 GO (Carriage Rtn)47 / 64 @ 81 Q 98 x (Multiply)
31 ERASE 48 0 (Zero) 65 A 82 R 99 ÷ (Divide)
32 SPACE 49 1 66 B 83 S 104 LIST
33 ! 50 2 67 C 84 T 105 CLEAR
34 “ (Quaotes) 51 3 68 D 85 U 106 RUN
35 # 52 4 69 E 86 V 107 NEXT
36 $ 53 5 70 F 87 W 108 LINE
37 % 54 6 71 G 88 X 109 IF
38 & 55 7 72 H 89 Y 110 GOTO
39 ‘ (Apostrophe) 56 8 73 I 90 Z 1ll GOSUB
40 (57 9 74 J 91 [112 RETURN
41) 58 : 75 K 92 \ 113 BOX
42 * 59 ; 76 L 93] 114 FOR
43 + 60 < 77 N 94 ↑ 115 INPUT

44 , (Comma) 61 = 78 N 95 ← 116 PRINT
45 - (Dash) 62 > 79 O 96 ↓ 117 STEP
46 . (Period) 63 ? 80 P 97 → 118 RND

119 TO

 Memory Map
 Decimal

On Board ROM 0 - 8191
Bally Basic ROM 8192 - 12287
Screen Memory Area 16384 - 20479
Bally Basic Graphics/ 16384 - 19983
 Program area
Bally Basic Scratchpad 20000 - 20463
Tape Input Buffer 20002 - 20049
Variables begin at 20078
Line Input Buffer 20180 - 20283
 (104 Characters)
Stack Area 20284 - 20462
Text Area -24576 - -22777
Note Lookup Table 12046

Special acknowledgement to: Mr. Brett Bilbrey for his
contribution of information to this manual.

